Quantcast

Aloha State News

Tuesday, May 21, 2024

1st observational evidence linking black holes to dark energy

Kauaicommunitycollege

Kauai Community College | Kauai Community College

Kauai Community College | Kauai Community College

  • February 15, 2023
  • Searching through existing data spanning 9 billion years, a team of researchers led by scientists at University of Hawaiʻi at Mānoa has uncovered the first evidence of “cosmological coupling”—a newly predicted phenomenon in Einstein’s theory of gravity, possible only when black holes are placed inside an evolving universe.UH Mānoa astrophysicists Duncan Farrah, a faculty member at the Institute for Astronomy and the Department of Physics and Astronomy, and Kevin Croker, a professor of physics and astronomy led this ambitious study, combining Hawaiʻi‘s expertise in galaxy evolution and gravity theory with the observation and analysis experience of researchers across nine countries to provide the first insight into what might exist inside real black holes.

    “When LIGO heard the first pair of black holes merge in late 2015, everything changed,” said Croker. “The signal was in excellent agreement with predictions on paper, but extending those predictions to millions, or billions of years? Matching that model of black holes to our expanding universe? It wasn’t at all clear how to do that.”

  • The team has recently published two papers, one in The Astrophysical Journal and the other in The Astrophysical Journal Letters, that studied supermassive black holes at the hearts of ancient and dormant galaxies.

    The first paper found that these black holes gain mass over billions of years in a way that can’t easily be explained by standard galaxy and black hole processes, such as mergers or accretion of gas.

    The second paper finds that the growth in mass of these black holes matches predictions for black holes that not only cosmologically couple, but also enclose vacuum energy—material that results from squeezing matter as much as possible without breaking Einstein’s equations, thus avoiding a singularity.

    With singularities absent, the paper then shows that the combined vacuum energy of black holes produced in the deaths of the universe’s first stars agrees with the measured quantity of dark energy in our universe.

  • “We’re really saying two things at once: that there’s evidence the typical black hole solutions don’t work for you on a long, long timescale, and we have the first proposed astrophysical source for dark energy,” said Farrah, lead author of both papers.

    “What that means, though, is not that other people haven’t proposed sources for dark energy, but this is the first observational paper where we’re not adding anything new to the universe as a source for dark energy: black holes in Einstein’s theory of gravity are the dark energy.”

    These new measurements, if supported by further evidence, will redefine our understanding of what a black hole is.

    This model at present should be considered as an exciting hypothesis, one which can be experimentally tested with more studies of existing data. Fortunately there is and will be more information which can be used to validate or reject the theory, though this will likely take some years. If confirmed it represents a major change in cosmology and points toward a revolution in our understanding of the universe.

    For more go to the Institute for Astronomy website.

  • Original source can be found here.

ORGANIZATIONS IN THIS STORY

!RECEIVE ALERTS

The next time we write about any of these orgs, we’ll email you a link to the story. You may edit your settings or unsubscribe at any time.
Sign-up

DONATE

Help support the Metric Media Foundation's mission to restore community based news.
Donate

MORE NEWS